病毒、木马ARP攻击行为的原理分析及解决pc软件 文章资讯 手机软件
您当前的位置→图文中心ARP文章ARP原理病毒、木马ARP攻击行为的原理分析及解决
阅读排行
  1. ARP原理再次讲解
  2. ARP攻击的原理
  3. ARP协议分析
  4. ARP协议的探测原理
  5. ARP协议解码详解
  6. ARP协议基础
  7. 病毒、木马ARP攻击行为的原理分析...
  8. 代理ARP工作原理
  9. ARP病毒电脑的定位方法
  10. ARP协议简介
  11. MAC地址和IP地址的区别
  12. ARP分析
  13. aRP的工作原理及高速缓存
  14. 交换网络中的嗅探和ARP欺骗
  15. ARP欺骗攻击原理详解

病毒、木马ARP攻击行为的原理分析及解决


2015/1/4  编辑:admin 来源:本站整理
1. 频繁的出现地址冲突的现象   2. 上网速度很慢甚至上不了网   经分析, 这大部分是由于病毒来进行ARP地址欺骗造成的。 由于ARP协议的固有的缺陷, 病毒可以通过发送send假的ARP数据信息包, 使得同网段的电脑计算机误以为中毒计算机是网关, 造成其它计算机上网中断(第一种情况)。 或是假冒网络net中特定的机器对这台机器通信的数据进行截获(第二种情况)。 为了避免中毒计算机对网络造成反应影响, 趋势科技已经提供相关的防御必备工具KB(62735), 由于ARP病毒攻击的复杂多变性, 现就在针对两种可以说是的攻击行为的原理进行分析, 并提出相应的解决处理思路。   上网速度很慢甚至上不了网   我们我自己最先是要了解一下ARP(Address Resolution Protocol)地址解析协议, 它是一种将IP地址转化成物理地址的协议。 ARP具体说来就是将网络层(TCP/IP协议的IP层, 也就是相当于OSI 的第三层)地址(32位)解析为数据链路层(TCP/IP协议的MAC层, 也就是相当于OSI的第二层)的MAC地址(48位)[RFC826]。 ARP 协议是属于链路层的协议, 在以太网中的数据帧从一个主机到达网内的另一台主机是根据记录48位的以太网地址(硬件地址)来确定接口的, 而不是根据32位的IP 地址。 内核(如驱动)就一定要知道目的端的硬件地址才能发送数据。 当然, 点对点(如两台直联的计算机)的连载是不有请求需要ARP协议的。 为了解释ARP协议的作用, 就必须理解数据在网络上的传输过程。 这里举一个不复杂的ping例子。   假设我们的计算机A的IP地址是192.168.1.50, 要测试与B机器的连通性, 执行这个命令:ping 192.168.1.51。 该命令会通过ICMP协议发送ICMP数据包。 该过程需要经过下面的步骤:   1、应用程序构造数据包, 该示例是产生ICMP包, 被提交给内核(网络驱动程序);   2、内核检查是否能够转化该IP地址为MAC地址, 也就是在本地的ARP缓存中查看IP-MAC对应表;   3、如果存在该IP-MAC对应关系, 那么数据包直接发出;如果不存在该IP-MAC对应关系, 那么接续下面的步骤;   4、内核进行ARP广播, 目的地的MAC地址是BB-BB-BB-BB-BB-BB, ARP命令类型为Request, 其中包含有自己的MAC地址;(下面会讲到具体包格式)   5、当B主机接收到该ARP请求后, 就发送一个ARP的Reply命令, 其中包含自己的MAC地址;   6、B获得A主机的IP-MAC地址对应关系, 并保存到ARP缓存中;   7、B内核将把IP转化为MAC地址, 之后封装在以太网头结构中, 再把数据发送出去;   使用arp -a命令就可以能够查看本地的ARP缓存内容, 所以, 执行一个本地的ping命令后, ARP缓存就一定会存在一个目的IP的记录了。 当然, 如果您的数据包是发送到不同网段的目的地, 那么就一定存在一条网关的IP-MAC地址对应的记录。   知道了ARP协议的作用, 就能够很清楚地知道, 数据包的向外传输依靠ARP协议, 当然, 也就是依赖ARP缓存。 要知道, ARP协议的所有操作都是内核全自动完成的, 同其他的应用程序没有任意一个关系。 ARP协议并不只在发送了ARP请求才接收ARP应答。 而ARP协议的固有缺陷就在这里, 当计算机接收到 ARP应答数据包的时候, 就会对本地的ARP缓存进行更新, 将应答中的IP和MAC地址存储在ARP缓存中。 因此, B向A发送一个自己伪造的ARP应答, 而这个应答中的数据为发送方IP地址是192.168.1.52(C的IP地址), MAC地址是BB-BB-BB- BB-BB-BB(C的MAC地址本来应该是CC-CC-CC-CC-CC-CC, 这里被伪造了)。 当A接收到B伪造的ARP应答, 就会更新本地的ARP 缓存, 将本地的IP-MAC对应表更换为接收到的数据格式, 由于这一切都是A的系统system内核自动完成的, A可不知道被伪造了。   某些病毒就是利用这个原理, 向受害者发送源硬件地址为随机产生貌似来自网关的ARP应答包, 于是在受害者缓存里, 网关的IP是对的的, 可对应的硬件地址却是错误的或者是中毒机器。 该计算机向外发送的数据包总是发送到了错误的网关硬件地址上或是中毒机器。   而如果病毒想要截获某台机器上网的所有通信而不被察觉, 只要同一个时间再向网关发送冒充此机器的相应的数据包即可实现。   频繁出现地址冲突的现象   主机A在连接网络(或更改IP地址)的时候就会向网络发送ARP包广播自己的IP地址。 如果网络中存在相同IP地址的主机B, 那么B就会通过 ARP reply该地址, 当A接收到这个reply后, A就会跳出IP地址冲突的警告, 当然B也会有警告。 因此用如果病毒发出的是ARP的Request包就会使用户会一直不断遭受IP地址冲突警告的困扰。   下面就上面分析做一个模拟病毒进行ARP攻击的行为的实验, 了解此类病毒是怎么才能产生危害的。   实验描述:此实验模仿ARP攻击的一种, 机器不断提示地址冲突, 运行变慢, 再也不能够上网的情况, 其他情况可自行参考模拟   分析:不同病毒在中毒机器上运行, 发送的ARP包是有一定的周期的, 受影响的系统产生的开销不一。 先模拟中毒机B以较大的发送频率发送到A机器上(未中毒), 如系统内核处理会不断处理接到的ARP包, 这时盗用者机器上会不断提示IP冲突, 则A机器上的系统开销将很大很大增加,很容易无法响应用户操作。 而这一切由于ARP处于网络协议的底层, 对一般防火墙等高层软件是透明的, 盗用者无从察觉, 只能看到机器不端弹出冲突信息, 系统很快慢下来, 最后没有任何响应。   实验内容:   1.第一步 让我们先了解一下ARP协议的数据结构:   typedefstructarphdr   {   unsignedshortarp_hrd;//硬件类型 使用的硬件(网络访问层)类型一般为 0806(ARP)   unsignedshortarp_pro;//协议类型 解析过程中的协议使用以太类型的值一般为000110M以太网)   unsignedchararp_hln;//硬件地址长度 对于以太网和令牌环来说, 其长度为6字节   unsignedchararp_pln;//协议地址长度 IP的长度是4字节   unsignedshortarp_op;ARP操作类型 指定当前执行操作的字段 1为请求, 2为应答   unsignedchararp_sha[6];/*发送者的硬件地址   unsignedlongarp_spa;//发送者的协议地址   unsignedchararp_tha[6];//目标的硬件地址   unsignedlongarp_tpa;//目标的协议地址   }ARPHDR,*PARPHDR;   下面, 假设中毒机器的硬件地址是AA-AA-AA-AA-AA-AA,IP地址是192.168.1.5, 受影响机器B的硬件地址是BB- BB- BB-BB-BB-BB, IP地址是192.168.1.51.为了便于说明, 我们在B机器上用Sniffer Pro工具先获得发送目标为192.168.1.51的 ARP数据包,   由于A中病毒不断发送ARP请求包, 我们很容易获得。 如图:    ARP请求包   现在我们结合图中上半部分的协议解析来分析下半部分的代码的意义,   共有四行每行都标了号   00行, ff ff ff ff ff ff 广播地址, 每个同网段用户都能收到。   aa aa aa aa aa aa 发送方的硬件地址   08 06 指使用ARP协议   10行, 00 01 10M 以太网   08 00 使用IP协议   06 硬件地址使用6字节表示   04 协议(IP)地址使用4字节表示   00 01 ARP请求包   aa aa aa aa aa aa 发送方硬件地址   c0 a8 01 32发送方IP地址   20行, 00 00 00 00 00 00 目标硬件地址   c0 a8 01 33 目标IP地址   其他数据与本文无关, 暂不讨论。   仔细看一下不难发现, IP为192.168.1.5的A的IP地址被”篡改”了, A网络中郑重宣告自己假冒是192.168.1.50。   使得与192.168.1.50通信的数据发到了192.168.1.5上, 而真正的192.168.1.50则运行缓慢甚至无法上网。   2. 下面利用获取的数据包, 通过SnifferPro的构造并发送数据包的功能对它进行简单的修改, 我们可以模拟一种病毒攻击方式:   对照前边捕获的数据包我们看到改动处有(红线标注):    数据包   1.aa aa aa aa aa aa 硬件目的地址中毒机器A(DLC, 数据链路层地址)   2.bb bb bb bb bb bb(第一组) 源硬件地址为受影响机器B(DLC)   3 bb bb bb bb bb bb(第二组) 源硬件地址为受影响机器B (ARP)   4 (c0 a8 01)32 目的IP地址为中毒机器A(ARP)   最后, 我们通过Sniffer的发包工具利用不间断发送(Continuously)将其发送给192.168.1.50, 将使其很快瘫痪。 笔者实验环境如下:TP-LINK R402M路由器, A机器配置1.8G.RAM 1.0G 。 B机器配置CPU1.0G,RAM128M,B机器发送数据包15秒左右, A机器进入“无法响应”状态。 可见, 如果病毒大规模爆发, 造成的网络拥塞影响是十分严重的。   最后, 提供几种防御ARP攻击行为的思路:   首先, 需要了解一下一般解决方法, 很多人知道如何捆绑MAC地址和IP地址, 进入“MS-DOS方式”或“命令提示符”, 在命令提示符下输入命令:ARP - s X.X.X.X YY-YY-YY-YY-YY-YY, 即可把MAC地址和IP地址捆绑在一起。 这样, 就将不会出现IP地址被盗用而不能够正常使用网络的情况。 从前面的分析我们知道, 即便我们知道了正确的网关硬件地址, 由于盗用者不断发送伪造ARP包, 网关却不知道合法用户的硬件地址, 而且合法用户端主机会不断产生IP冲突的警告。 事实上, ARP命令是对局域网的上网代理服务器来说的, 如我们提出的KB(62735)中的”APR解决方案”细节内容不在本文论述范围内。   一般说来, 在网络关键设备上使用的解决盗用的方法大体上有3种方案:采用路由器将网卡MAC地址与IP地址绑定;采用高端交换机将交换机端口、网卡 MAC 地址与IP地址三者绑定;代理服务器与防火墙相结合的办法。 这几种方法各有优缺点, 采用路由器将网卡MAC地址与IP地址绑定的方法, 只能解决静态地址的修改, 对于成对修改IP-MAC地址就无能为力。 采用高端交换机将交换机端口、网卡MAC地址与IP地址三者绑定的方法, 可以解决成对修改IP-MAC地址的问题, 但高端交换机费用昂贵, 而且解决冲突具有滞后性。   当我们遇到ARP类病毒时,   1 采用IP-MAC 绑定方法预防, 如利用KB(62735)解决方案部署中ipmac_binds_tools.exe 防御工具   2 一旦发现无法解决的ARP病毒较复杂的攻击行为, 请用户使用工具抓取病毒爆发时网络中的数据包, 根据以上ARP病毒的原理, 分析数据包去寻找到频繁发送ARP的REQUEST或REPLY请求的机器, 从而找到病毒源头进行查杀毒。
相关文章
  • badrabbit(坏兔子)病毒来到,请大家及时预防
  • 科学家发现一亿年前的病毒体
  • 中冲击波病毒是什么?怎么清除电脑冲击波病毒
  • skypee病毒怎么删除
  • 腾讯电脑管家彻底防御Petya勒索病毒
  • iPhone为什么这么安全,不怕病毒攻击
  • Petya勒索病毒是什么 Petya勒索病毒怎么查杀防御
  • 几十人中招的勒索病毒比百万人中“暗云3”受关注
  • 勒索病毒卷土重来!目标对准安卓机伪装身份诱惑人
  • 勒索病毒卷土重来!伪装攻击安卓手机用户!
  • 利发国际88lifa中勒索病毒,威胁几乎所有的安卓手机
  • 科学家注射病毒到眼睛里反转了老化眼盲的症状!
  • Fireball火球病毒正在传播感染,该如何查杀?
  • WannaCry病毒肆虐全球,唯有这家网络安全公司融资1亿美金却笑不出来
  • 勒索病毒肆虐本不应该 联防联控云上更安全
  • 勒索病毒肆虐敲響警鐘 凸顯三大信息安全問題
  • 1KB快捷方式病毒专杀
  • 勒索病毒引安全大猜想:荣耀Magic2系统或将铸造“铜墙铁壁”
  • 安全专家警告:继勒索病毒后WinXP将迎来第2波攻击
  • 瑞星发布可防未知勒索病毒工具 将逐月公布更多漏洞
  • 发表评论
    网站帮助 - 广告合作 - 下载声明 - 网站地图
    88lifa